Statistics

Summer 2023

Lecture 8

Feb 19-8:47 AM

Class QE 8
Given $P(A)=.4, P(B)=.8, P(A$ and $B)=.3$
find

1) $P(A$ or $B)=.4+.8-.3=.9 \checkmark$
$=P(A)+P(B)-P(A$ and $B)$
De Morgan's Law
2) $P(\bar{A}$ and $\bar{B})$ 3) $P(\bar{A}$ or $\bar{B})$
$=P(\overline{A \operatorname{Oor} B})=1-.9=.7 \Omega=P(\overline{A \text { and } B})$
=1-P(Aorb)
$=1-P(A \operatorname{and} B)$

$=.4-.3=.1$
$P($ BonY $)=P(B)-P(A$ and $B)$
$=.8-.3=.5$

$$
P(A \text { only OR B only })=.1+.5=0.6
$$

Jun 26-7:38 AM

A box 3 Quarters and 5 nickels.
Select 3 coins no replacement.
$Q Q Q \quad P(Q Q Q)=\frac{3}{8} \cdot \frac{2}{7} \cdot \frac{1}{6}=\frac{1}{56}$
some Q
sone

$$
P(N N N)=\frac{5}{8} \cdot \frac{4}{7} \cdot \frac{3}{6}=\frac{5}{28}
$$

RN
$P($ at least $1 Q)=1-P($ NO $Q)=1-P(N N N)=1-\frac{5}{28}=\frac{23}{28}$
$P($ at least $1 N)=1-P($ No $N)=1-P(Q Q Q)=1-\frac{1}{56}=\frac{55}{56}$
Sample Space
$Q Q Q \rightarrow 75 \$ \quad P(75 \Phi)=P(Q Q Q)=\frac{1}{56}$
$\checkmark Q Q N \rightarrow 554$
$\checkmark Q N Q \rightarrow 55 \$$ $P(55 \phi)=3 \cdot P(Q Q N)$
$Q N N \rightarrow 35 \$ \sqrt{ }=3 \cdot \frac{3}{8} \cdot \frac{2}{7} \cdot \frac{5}{6}=\frac{15}{56}$
$\checkmark N Q Q \rightarrow 55 \$ \quad P(35 \psi)=3 \cdot P(Q N N)$

$$
\begin{array}{ll}
N Q N \rightarrow 35 \notin r & =3 \cdot \frac{3}{8} \cdot \frac{5}{7} \cdot \frac{4}{6}=\frac{15}{28} \\
N N Q \rightarrow 35 \notin r & P(15 \phi)=P(N N N)=\frac{5}{28}
\end{array}
$$

Jun 26-8:00 AM

Jun 26-8:20 AM

$$
\begin{aligned}
& 5 \text { Females, } 10 \text { males, Select } 3 \text { people } \\
& \text { 1) How many ways can we select } 3 \text { people? } \\
& { }_{15} C_{3}=455 \\
& \text { 2) How many ways can we Select } \\
& 1 \text { female ז. a males? } \\
& 5_{1} C_{1} \cdot{ }_{10} C_{2}=225 \\
& \text { 3) } P(1 f!2 m)=\frac{5^{C_{1}} \cdot 10^{C_{2}}}{{ }_{15}{ }^{C_{3}}}=\frac{225}{455}=\frac{45}{91} \\
& \text { 4) } P\left(2 F \Sigma_{1} 1 m\right)=\frac{5^{c_{2}} \cdot 1 C_{1}}{15 C_{3}}=\frac{100}{455}=\frac{20}{91} \\
& \text { 5) } P(\text { sill Females })=\frac{5^{C_{3}} \cdot{ }_{10} C_{0}}{15_{3}}=\frac{10}{455}=\frac{2}{91} \\
& \text { 6) } P(\text { All males })=\frac{5^{C_{0}} \cdot 10^{C_{3}}}{15^{C_{3}}}=\frac{120}{455}=\frac{24}{91} \\
& \text { ग) } P(\text { at least } 1 \text { Female })=1-P \text { (No Females) } \\
& =1-P(\text { (Al males })=1-\frac{24}{91}=6 \frac{67}{91} \\
& \text { 8) } P \text { (at least } 1 \text { male) }=1-P \text { (No males) } \\
& =1-P(A l l \text { females })=1-\frac{2}{91}=\frac{89}{91}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Conditional Probabilities } \\
& \text { multiplication Rule } \\
& \begin{array}{r}
P(A \text { and } B)=P(A) \cdot P(B \mid A) \\
\text { Given }
\end{array} \\
& \text { with Some algebra } \\
& \begin{array}{l}
P(B \mid A)=\frac{P(A \text { and } B)}{P(A)} \\
P(B)=.5 \quad P(\text { And } B)=025
\end{array} \\
& P(B \mid A)=\xrightarrow{P(A \text { and } B)}=\frac{.25}{.4}=025 \\
& P(A \mid B)=\underset{\longrightarrow P(B)}{P(A \text { and } B)}=\frac{.25}{.5}=.5
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { Coffee })=.6 \\
& P(\text { Donuts })=.3 \\
& P(\text { Coffee and Donuts })=.2
\end{aligned}
$$

$$
\begin{aligned}
& P(\text { iPhone })=.8 \\
& P(M A C)=.3 \\
& P(\text { mac } \mid \text { iPhone })=\frac{P(\text { iphone and MAs })}{P(\text { iphone })} \\
& P(\text { MAC } \mid \text { iphone })=.4 \quad .4=\frac{P(\text { iPhone and MAC) }}{.8} \\
& P \text { (iphone and MAC) = cross-Multiply } \\
& P(\text { iPhone and MAC) }=.32 \\
& \text { You cannot have } \\
& \text { Neg. Prob. } \\
& \text { Jun 26-9:19 AM } \\
& P(\text { iPhone })=.7 \\
& P(M A C)=.3 \\
& P(\text { MAC } \mid \text { iphone })=.4 \quad .4=\frac{P(\text { iphone and } M A C)}{.7} \\
& P \text { (iphone and MAC) = cross-Multiply } \\
& P(\text { iPhone and MAC) }=.28 \\
& .7-.28=.42 \\
& .3-.28=.02 \\
& \text { P(iPhone /MAC) } \\
& =\frac{P \text { (iphone andmAC) }}{P(M A C)}=\frac{.28}{.3}=.933
\end{aligned}
$$

$$
\begin{aligned}
& P(H B)=.8 \\
& P(F F)=.4 \\
& P(H B \text { and } F F)=.3 \\
& \text { 2) } P(F F \mid H B)=\frac{P(F F \text { and } H B)}{P(H B)}=\frac{.3}{.8}=.375 \\
& \text { 3) } P(H B \mid F F)=\frac{P(F F \text { and } H B)}{P(F F)}=\frac{.3}{.4}=.75
\end{aligned}
$$

Jun 26-9:32 AM

3 Red, 4 Blue, 5 Green balls.
Select 3 balls, No replacement.

$$
\begin{aligned}
& P(\text { All Red })=\frac{3}{12} \cdot \frac{2}{11} \cdot \frac{1}{10}=\frac{1}{220} \mathrm{~J} \\
& =\frac{3^{C_{3}} \cdot 4^{C_{0}} \cdot{ }_{5} C_{0}}{12 C_{3}}=\frac{1}{220} \mathrm{~J} \\
& P(\text { All Blue })=\frac{4}{12} \cdot \frac{3}{71} \cdot \frac{2}{10}=\frac{1}{55} \\
& =\frac{3 C_{0} \cdot{ }_{4} C_{3} \cdot{ }_{50}}{{ }_{12} C_{3}}=\frac{4}{220}=\frac{1}{55} \\
& P(A \| l \text { Green })=\frac{5}{12} \cdot \frac{4}{11} \cdot \frac{3}{10}=\frac{1}{22} \\
& =\frac{3_{0} C_{0} \cdot{ }_{4} C_{0} \cdot{ }_{53}{ }_{12} C_{3}}{1^{2}}=\frac{10}{220}=\frac{7}{22} \\
& P \text { (one of each) }=\frac{3 C_{1} \cdot 4^{C} 1 \cdot 5^{C} C_{1}}{12^{C}}=\frac{60}{220}=\frac{3}{71}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Jun 26-9:38 AM }
\end{aligned}
$$

$$
\begin{aligned}
P(\text { at least } 1 \text { Red })^{\text {R }} & 1-P(\text { No Red }) \\
& =1-\frac{{ }^{C_{0}} \cdot 9^{\circ} 9^{C_{3}}}{12^{C_{3}}} \\
& =1-\frac{84}{220}=\frac{34}{55}
\end{aligned}
$$

$P($ at least 1 Blue $)=1-P($ No Blue), other Balls

$$
=1-\frac{4 C_{0} \cdot 8_{3}}{1 C^{C_{3}}}=1-\frac{56}{220}
$$

$P($ at least 1 Green $)=1-P($ No Green $)$

$$
=1-\frac{5_{0} C_{0} 7^{\circ}{ }^{2}=1}{12 C_{3}}=1-\frac{35}{220}=\frac{37}{44}
$$

Jun 26-9:54 AM

8 females, 12 Males, Select 4 people,

$$
\begin{aligned}
& P(2 F \stackrel{1}{2} 2 M)=\frac{8^{C_{2}} \cdot{ }_{12} C_{2}}{20 C_{4}}=\frac{616}{1615} \\
& P(\text { at least } 1 \text { female })=1-\frac{{ }_{80} C_{0} \cdot{ }_{12} C_{4}}{20^{C_{4}}}=\frac{290}{323} \\
& P(\text { at least } 1 \text { Male })=1-\frac{8^{C_{4}} \cdot{ }_{12} C_{0}}{20^{C} C_{4}}=\frac{955}{969}
\end{aligned}
$$

Data
$\left\{\begin{array}{l}\text { 1) Qualitative } \\ \\ \\ \end{array}\right.$
2) Quantitative
(1) Discrete "Countable"
2) Continuous
"Measureable"

Let X be a discrete Random variable with Prob. distribution $P(x)$. what is a prob. dist.?

It is a method that will provide the Prob. of all possible outcomes.
Prob. dist can be in the form of

1) Table
2) Graph
3) Formula

Some Properties of prob. dist. $P(x)$:

1) $0 \leq P(x) \leq 1$
2) $\sum p(x)=1$
3) $P(x)=0 \leftrightarrow$ Impossible Event
4) $P(x)=1 \triangleleft$ Sure event
5) $0<P(x) \leq .05 \mapsto$ Rare event

Jun 26-10:37 AM

x	$P(x)$
1	.2
2	.5
3	.3

1) Verify $\sum P(x)=1$.
2)

$$
\begin{aligned}
P(x \geq 2) & =1-P(x=1) \\
& =1-.2=.8
\end{aligned}
$$

3) $P(x \leq 2)=1-P(x=3)$

$$
=1-.3=0.0
$$

4) Draw Prob. dist. histogram.

$$
\begin{aligned}
& x \rightarrow \text { Midpt } \\
& P(x) \rightarrow \text { Rel. F. }
\end{aligned}
$$

Consider the chart below:

1) $P(x=4)=1-\{.1+.3+.4\}=.2$
2) $P(x=1$ or $x=4)=$

$$
.1+.2=0.3
$$

3) $P(x>1)=P(x \geq 2)$

$$
\begin{aligned}
& =1-p(x=1) \\
& =1-.1=9
\end{aligned}
$$

4) Draw Prob. dist. histogram

Jun 26-10:44 AM

Complete the Chart below

x	$P(x)$	$x P(x)$	$x^{2} P(x)$
1	.2	.2	.2
2	.5	1.0	2.0
3	.3	.9	2.7

1)

$$
\begin{aligned}
& \sum x p(x) \\
& =.2+1.0+.9=2.1
\end{aligned}
$$

2)

$$
\begin{aligned}
& \sum x^{2} p(x) \\
& =.2+2.0+2.7=4.9
\end{aligned}
$$

3) $\sum x^{2} p(x)-\left(\sum x p(x)\right)^{2}=4.9-2.1^{2}=.49$
4) $\sqrt{\text { last answer }}=\sqrt{.49}=.7$

Complete the chart below

x	$P(x)$	$x P(x)$	$x^{2} P(x)$
1	.2	.2	.2
2	.3	.6	1.2
3	.4	1.2	3.6
4	.1	.4	1.6

1) $\sum p(x)=1$
2) $\sum x p(x)=2.4$
3) $\sum x^{2} p(x)=6.6$
4) $\sum x^{2} p(x)-\left(\sum x p(x)\right)^{2}=6.6-2.4^{2}=.84$
5) $\sqrt{\text { last answer }}=\sqrt{.84} \approx .917$
6) Draw Prob. dist. histogram

Jun 26-10:56 AM

Mean $\mu{ }^{\circ} m u^{\prime \prime}$

$$
\mu=\sum x p(x)
$$

Variance σ^{2} sigma*

$$
\sigma^{2}=\sum \lambda^{2} p(x)-\mu^{2}
$$

$$
\sigma=\sqrt{\sigma^{2}}
$$

Standard deviation σ "Sigma"

x	$P(x)$	$x P(x)$	$x^{2} P(x)$
1	.3	.3	.3
2	.4	.8	1.6
3	.3	.9	2.7

$$
\begin{aligned}
& \mu=\sum x p(x)=.3+.8+.9=2 \\
& \sigma^{2}=\sum x^{2} p(x)-\mu^{2}=.3+1.6+2.7-2^{2}=.6 \\
& \sigma=\sqrt{\sigma^{2}}=\sqrt{.6}=.775
\end{aligned}
$$

How to find $\mu \dot{\varepsilon} \cdot \sigma$ using TI: b $x \rightarrow L 1$ use I - Var Stats with LI $\dot{L} L 2$ $P(x) \rightarrow L 2$

$$
\begin{aligned}
& \mu=\bar{x}=2 \\
& \sigma=\sigma_{x}=.775 \\
& n=1 \boldsymbol{l} \\
& s_{x} \text { blank }
\end{aligned}
$$

Freglist

What about σ^{2} ?

Given

x	$P(x)$
1	.15
2	.25
3	.35
4	.25

$$
\frac{1}{P(x) 2)=1-.15=85}
$$ In fraction

$$
\begin{aligned}
& P(x) 2)=1-.15=.85 \\
& P(x \leq 3)=1-.25=.75
\end{aligned}
$$ MATH 1 Frack Enter $P(x \leq 3)=1-.25=75 \frac{101}{100}$

$$
x \rightarrow L 1, P(x) \rightarrow L 2
$$

Use 1-Var Stats with
L1 E!L2 to find $\mu=\bar{x}=2.7 \quad v \mathrm{~s}$ blank $\sigma=\sigma_{x}=1.005$ $\checkmark_{n}=1$ $\sigma^{2}=1.01$ 100
class QE 9
4 Females, 6 Males, Select 3 people.
1)

$$
\text { 1) } \begin{aligned}
P(\text { at least } 1 \text { female }) & =1-P(\text { All males }) \\
& =1-\frac{6}{10} \cdot \frac{5}{9} \cdot \frac{4}{8}=\frac{5}{6}
\end{aligned}
$$

2) P (at least 1 Male) $=1-P$ (all females)

$$
=1-\frac{4}{10} \cdot \frac{3}{9} \cdot \frac{2}{8}=\frac{29}{30}
$$

